The dramatic increase in the use of knowledge discovery applications requires end users to write complex database search requests to retrieve information. Such users are not only expected to grasp the structural complexity of complex databases but also the semantic relationships between data stored in databases. In order to overcome such difficulties, researchers have been focusing on knowledge representation and interactive query generation through ontologies, with particular emphasis on improving the interface between data and search requests in order to bring the result sets closer to users research requirements. This paper discusses ontology-based information retrieval approaches and techniques by taking into consideration the aspects of ontology modelling, processing and the translation of ontological knowledge into database search requests. It also extensively compares the existing ontology-to-database transformation and mapping approaches in terms of loss of data and semantics, structural mapping and domain knowledge applicability. The research outcomes, recommendations and future challenges presented in this paper can bridge the gap between ontology and relational models to generate precise search requests using ontologies. Moreover, the comparison presented between various ontology-based information retrieval, database-to-ontology transformations and ontology-to-database mappings approaches provides a reference for enhancing the searching capabilities of massively loaded information management systems.