首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:FPGA - Implementation of Wavelet Based Denoising Technque to Remove Ocular Artifact from Single-Channel EEG Signal
  • 本地全文:下载
  • 作者:Chen Ronghua ; Li Dongmei ; Zhang Milin
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2018
  • 卷号:8
  • 期号:5
  • 页码:25-35
  • DOI:10.5121/csit.2018.80503
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This paper presents the real-time implementation on FPGA of the wavelet-based denoisingtechnique to remove the ocular artifact from the signal-channel EEG signal. The advantage ofthis method over conventional methods is that there is no need for the recording of theelectrooculogram (EOG) signal itself. This approach papers both for eye blinks and eyemovements. Discrete Wavelet Transform (DWT) is selected end the hard-thresholding is appliedto the wavelet coefficients using the Statistical Threshold (ST) estimated in interested bands.This real-time architecture presents two characteristics: 1) quantization of the filter coefficientsand the elimination of the multiplier to reduce the hard cost, and 2) symmetrical extension of thesignal boundary to full reconstruction while the data volume is invariable. Experimental resultsshow that proposed architecture efficiently removes the ocular artifact from EEG signal.
  • 关键词:Wavelet transform; EEG; ocular artefact; hard-thresholding; denoising
国家哲学社会科学文献中心版权所有