首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:A Survey of Markov Chain Models in Linguistics Applications
  • 本地全文:下载
  • 作者:Fawaz S. Al-Anziand Dia AbuZeina
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2016
  • 卷号:6
  • 期号:13
  • 页码:53-62
  • DOI:10.5121/csit.2016.61305
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Markov chain theory isan important tool in applied probability that is quite useful in modelingreal-world computing applications.For a long time, rresearchers have used Markov chains fordata modeling in a wide range of applications that belong to different fields such ascomputational linguists, image processing, communications,bioinformatics, finance systems,etc. This paper explores the Markov chain theory and its extension hidden Markov models(HMM) in natural language processing (NLP) applications. This paper also presents someaspects related to Markov chains and HMM such as creating transition matrices, calculatingdata sequence probabilities, and extracting the hidden states.
  • 关键词:Markov chains;Hidden Markov Models; computational linguistics; pattern recognition;statistical
国家哲学社会科学文献中心版权所有