首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants
  • 本地全文:下载
  • 作者:Hermine Biermé ; Aline Bonami ; Ivan Nourdin
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2012
  • 卷号:IX
  • 期号:2
  • 页码:473-500
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:Let {Fn : n > 1} be a normalized sequence of random variables insome fixed Wiener chaos associated with a general Gaussian field, and assume thatE[F4n] ! E[N4] = 3, where N is a standard Gaussian random variable. Our mainresult is the following general bound: there exist two finite constants c,C > 0such that, for n sufficiently large, c × max(|E[F3n]|,E[F4n] − 3) 6 d(Fn,N) 6C × max(|E[F3n]|,E[F4n] − 3), where d(Fn,N) = sup |E[h(Fn)] − E[h(N)]|, andh runs over the class of all real functions with a second derivative bounded by 1.This shows that the deterministic sequence max(|E[F3n]|,E[F4n] − 3), n > 1, completelycharacterizes the rate of convergence (with respect to smooth distances) inCLTs involving chaotic random variables. These results are used to determine optimalrates of convergence in the Breuer-Major central limit theorem, with specificemphasis on fractional Gaussian noise.
  • 关键词:Berry-Esseen inequalities; Breuer-Major Theorem; Central Limit The-;orems; Cumulants; Fractional Brownian Motion; Gaussian Fields; Malliavin calculus; Optimal;Rates; Stein’s Method.
国家哲学社会科学文献中心版权所有