首页    期刊浏览 2025年04月21日 星期一
登录注册

文章基本信息

  • 标题:The Mittag--Leffler process and a scaling limit for the block counting process of the Bolthausen--Sznitman coalescent
  • 本地全文:下载
  • 作者:Martin Möhle
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2015
  • 卷号:XII
  • 页码:35-53
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:The Mittag{Leer process X = (Xt)t0 is introduced. This Markovprocess has the property that its marginal random variables Xt are Mittag{Leerdistributed with parameter e􀀀t, t 2 [0;1), and the semigroup (Tt)t0 of X satis es Ttf(x) = E(f(xe􀀀tXt)) for all x  0 and all bounded measurable functionsf : [0;1) ! R. Further characteristics of the process X are derived, for examplean explicit formula for the joint moments of its nite-dimensional distributions.The Mittag{Leer process turns out to be Siegmund dual to Neveu's continuousstatebranching process. The main result states that the block counting process ofthe Bolthausen{Sznitman n-coalescent, properly scaled, converges in the Skorohodtopology to the Mittag{Leer process X as the sample size n tends to in nity. Weprovide an equivalent version of this convergence result involving stable distributions.
  • 关键词:Block counting process; Bolthausen{Sznitman coalescent; continuous-;state branching process; marginal distributions; Mittag{Leer process; stable distribution; weak;convergence.
国家哲学社会科学文献中心版权所有