首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Incremental LLE Based on Back Propagation Neural Network
  • 本地全文:下载
  • 作者:Yansheng Zhang ; Dong Ye ; Yuanhong Liu
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2018
  • 卷号:170
  • 期号:4
  • 页码:042051
  • DOI:10.1088/1755-1315/170/4/042051
  • 语种:English
  • 出版社:IOP Publishing
  • 摘要:Locally Linear Embedding (LLE) algorithm is one of promising NonLinear Dimensionality Reduction (NLDR) method for feature extraction. Like most NLDR algorithms, LLE operates in a batch or off-line mode, in other words, for newly coming samples, the old data augmented by the new samples must be completely recalculated by LLE algorithm, which is computationally intensive. Back propagation neural network (BP) is a nonlinear mapping method, and it can learn all the information of a dataset, further, when BP is trained well, it is effective to predict new data. Hence, in this paper, BP is combined with LLE (BPLLE) to deal with out-of-sample data. Four synthetic datasets and two real datasets are given to demonstrate that BPLLE is more valid than several classical incremental LLE algorithms.
国家哲学社会科学文献中心版权所有