摘要:We propose a new method for background modeling. Our method is based on the two complementary approaches. One uses the probability density function (PDF) to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. Then, foreground object is detected based on the estimated PDF. The method is based on the evaluation of the local texture at pixel-level resolution which reduces the effects of variations in lighting. Fusing those approachs realizes robust object detection under varying illumination. Several experiments show the effectiveness of our approach.