首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression
  • 本地全文:下载
  • 作者:Jennifer F. Bobb ; Birgit Claus Henn ; Linda Valeri
  • 期刊名称:Environmental Health - a Global Access Science Source
  • 印刷版ISSN:1476-069X
  • 电子版ISSN:1476-069X
  • 出版年度:2018
  • 卷号:17
  • 期号:1
  • 页码:67
  • DOI:10.1186/s12940-018-0413-y
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health.
  • 关键词:Multiple exposures ; Mixtures ; Exposure-response ; Variable selection ; Health risk estimation
国家哲学社会科学文献中心版权所有