首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:COHERENT FORECASTING IN INTEGER - VALUED AR(1) MODELS WITH GEOMETRIC MARGINALS
  • 本地全文:下载
  • 作者:Manik Awale ; T. V. Ramanathan ; Mohan Kale
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2017
  • 卷号:15
  • 期号:1
  • 页码:95-114
  • 出版社:Tingmao Publish Company
  • 摘要:This paper discusses the coherent forecasting in two types of integer-valued geometric autoregressive time series models of order one, viz., Geometric Integer-valued Autoregressive (GINAR(1)) model and New Geometric Integer-valued Autoregressive (NGINAR(1)) model. GINAR(1) model uses binomial thinning for the process generation, whereas, NGINAR(1) uses negative binomial thinning. The k-step ahead conditional probability mass function and the corresponding probability generating functions are derived. It is observed that for higher order lags, the conditional mean, variance and the probability generating functions of these two processes are close to each other, whereas, for lower order lags, they differ. The coherent forecasting performance of these models is studied with the help of simulated and real data sets.
  • 关键词:Binomial thinning; coherent forecasting; geometric integer- valued autoregressive models; negative binomial thinning.
国家哲学社会科学文献中心版权所有