首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Selection of Smoothing Parameter for One-Step Sparse Estimates with Lq Penalty
  • 本地全文:下载
  • 作者:Masaru Kanba ; Kanta Naito
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2011
  • 卷号:9
  • 期号:4
  • 页码:549-564
  • 出版社:Tingmao Publish Company
  • 摘要:This paper discusses the selection of the smoothing parameternecessary to implement a penalized regression using a nonconcave penaltyfunction. The proposed method can be derived from a Bayesian viewpoint,and the resultant smoothing parameter is guaranteed to satisfy the sucientconditions for the oracle properties of a one-step estimator. The results ofsimulation and application to some real data sets reveal that our proposalworks eciently, especially for discrete outputs.
  • 关键词:One-step estimator; oracle properties; penalized likelihood;smoothing parameter; variable selection.
国家哲学社会科学文献中心版权所有