期刊名称:Balkan Journal of Electrical & Computer Engineering
印刷版ISSN:2147-284X
出版年度:2016
卷号:4
期号:1
页码:37
DOI:10.17694/bajece.62699
出版社:Kirklareli University
摘要:This paper aims to represent a proposition of an innovative and novel methodology applicable in detecting and classifying the power quality disturbances present in the supply to the induction motor. In all practicality, considering circumstantial real world applications, induction motors are usually operated on load. If the supply voltage is varied in any way, it would adversely affect the normal operation of the motor. In the present work, a healthy induction motor is subjected to power quality disturbances like balanced voltage sag, balanced voltage swell, unbalanced voltage sag and unbalanced voltage swell. For the purpose of detecting these power quality disturbances, discrete wavelet transform is applied to the stator current of the induction motor. The stator current wavelet coefficients are fed as input to the neural network for the classification purpose. Radial basis neural network and feed forward neural network have been independently trained and tested. The observation about the feedforward network having higher performance efficiency as compared to the radial basis network, has been seen.