首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Regression model for heat consumption monitoring and forecasting
  • 本地全文:下载
  • 作者:Tatyana Dobrovolskaya ; Valery Stennikov
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:39
  • 页码:1-6
  • DOI:10.1051/e3sconf/20183903005
  • 出版社:EDP Sciences
  • 摘要:Heat supply is socially and economically important in our country. In this regard, high-quality monitoring and planning of the development of heat supply systems are a strategic vector of scientific research. This paper is focused on the studies demonstrating how to choose a methodological approach to describe changes in heat consumption in the retrospective. The change in heat consumption is described using multiple regression models. In the first part of the paper, the parameters for the regression model are determined and a statistical analysis of the obtained model is performed. In the second part of the paper, to eliminate the multicollinearity of the regression equation, the number of dependent variables in the model is reduced. A statistical analysis of the new regression model and the exponential regression model are carried out. The heat consumption values obtained using these models are compared with the statistical data. The conclusions about the quality of the obtained regression models are made. In the third part of the article, we make a forecast of heat consumption in the medium term by using a linear regression model and an exponential model.
  • 其他摘要:Heat supply is socially and economically important in our country. In this regard, high-quality monitoring and planning of the development of heat supply systems are a strategic vector of scientific research. This paper is focused on the studies demonstrating how to choose a methodological approach to describe changes in heat consumption in the retrospective. The change in heat consumption is described using multiple regression models. In the first part of the paper, the parameters for the regression model are determined and a statistical analysis of the obtained model is performed. In the second part of the paper, to eliminate the multicollinearity of the regression equation, the number of dependent variables in the model is reduced. A statistical analysis of the new regression model and the exponential regression model are carried out. The heat consumption values obtained using these models are compared with the statistical data. The conclusions about the quality of the obtained regression models are made. In the third part of the article, we make a forecast of heat consumption in the medium term by using a linear regression model and an exponential model.
国家哲学社会科学文献中心版权所有