首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Open Source Toolkit for Speech to Text Translation
  • 本地全文:下载
  • 作者:Thomas Zenkel ; Matthias Sperber ; Jan Niehues
  • 期刊名称:The Prague Bulletin of Mathematical Linguistics
  • 印刷版ISSN:0032-6585
  • 电子版ISSN:1804-0462
  • 出版年度:2018
  • 卷号:111
  • 期号:1
  • 页码:125-135
  • DOI:10.2478/pralin-2018-0011
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:In this paper we introduce an open source toolkit for speech translation. While there already exists a wide variety of open source tools for the essential tasks of a speech translation system, our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We provide a Docker container with a ready to use pipeline of the following components: a neural speech recognition system, a sentence segmentation system and an attention-based translation system. We provide recipes for training and evaluating models for the task of translating English lectures and TED talks to German. Additionally, we provide pre-trained models for this task. With this toolkit we hope to facilitate the development of speech translation systems and to encourage researchers to improve the overall performance of speech translation systems.
国家哲学社会科学文献中心版权所有