首页    期刊浏览 2025年07月05日 星期六
登录注册

文章基本信息

  • 标题:Multi-Task Minimum Error Rate Training for SMT
  • 作者:Patrick Simianer ; Katharina Wäschle ; Stefan Riezler
  • 期刊名称:The Prague Bulletin of Mathematical Linguistics
  • 印刷版ISSN:0032-6585
  • 电子版ISSN:1804-0462
  • 出版年度:2011
  • 卷号:96
  • 期号:1
  • 页码:99-108
  • DOI:10.2478/v10108-011-0015-0
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:We present experiments on multi-task learning for discriminative training in statistical machine translation (SMT), extending standard minimum-error-rate training (MERT) by techniques that take advantage of the similarity of related tasks. We apply our techniques to German-to-English translation of patents from 8 tasks according to the International Patent Classification (IPC) system. Our experiments show statistically significant gains over task-specific training by techniques that model commonalities through shared parameters. However, more finegrained combinations of shared parameters with task-specific ones could not be brought to bear on models with a small number of dense features. The software used in the experiments is released as open-source tool.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有