首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:The measurements of snow cover volume in the area of Szrenicki Cirque
  • 本地全文:下载
  • 作者:Paulina Lewińska ; Dominik Sowiński ; Stanisław Szombara
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:49
  • 页码:1-9
  • DOI:10.1051/e3sconf/20184900067
  • 出版社:EDP Sciences
  • 摘要:The purpose of this project is to determine a fast way of calculating the volume and distribution of snow mantle, which is located in wide terrain concavities in mountain areas. Our study area was so-called Szrenicki Cirque (Kocioł Szrenicki), which is the nival recess, located in Karkonosze Mountains, Poland. We analyzed modern technologies, that are designed to generate 3D-models: terrain laser scanning and close-range photogrammetry (including structure-from-motion technique). There were two major reasons for our research. First, analyzing if a structure-frommotion based software is capable of creating a 3D model of snow cover since potential tie points for adjoin pictures are scarce. The second was to establish the quality and accuracy of this model in relation to potentially more accurate terrestrial laser scanning results. An important issue was also is to estimate the fastest, simplest and least expensive methodology that can be implemented as a daily task of Karkonosze National Park workers. A proper, fast, safe and accurate method of calculating the snow cover volume would incise the safety and avalanche risk evaluation in the vicinity of Karkonosze Mountains. In addition, the developed method can be used to monitor the risk of local spring floods.
  • 其他摘要:The purpose of this project is to determine a fast way of calculating the volume and distribution of snow mantle, which is located in wide terrain concavities in mountain areas. Our study area was so-called Szrenicki Cirque (Kocioł Szrenicki), which is the nival recess, located in Karkonosze Mountains, Poland. We analyzed modern technologies, that are designed to generate 3D-models: terrain laser scanning and close-range photogrammetry (including structure-from-motion technique). There were two major reasons for our research. First, analyzing if a structure-frommotion based software is capable of creating a 3D model of snow cover since potential tie points for adjoin pictures are scarce. The second was to establish the quality and accuracy of this model in relation to potentially more accurate terrestrial laser scanning results. An important issue was also is to estimate the fastest, simplest and least expensive methodology that can be implemented as a daily task of Karkonosze National Park workers. A proper, fast, safe and accurate method of calculating the snow cover volume would incise the safety and avalanche risk evaluation in the vicinity of Karkonosze Mountains. In addition, the developed method can be used to monitor the risk of local spring floods.
国家哲学社会科学文献中心版权所有