首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:The influence of a thermal bridge in the corner of the walls on the possibility of water vapour condensation
  • 本地全文:下载
  • 作者:Przemysław Miąsik ; Lech Lichołai
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:49
  • 页码:1-8
  • DOI:10.1051/e3sconf/20184900072
  • 出版社:EDP Sciences
  • 摘要:The article presents an analysis of temperature on an internal wall surface. Simulations on the external wall corner were also carried out. It is a place where the surface temperature is lower due to the thermal bridge effect. The calculations were performed with the ADINA program used for numerical simulations on heat transfer through divisional structures. Finite element analysis was employed to solve the task. The calculations were performed for five case studies with different corner structures and different methods of insulation. The baseline was a wall with the heat transfer coefficient U = 0,30 W/(m2 K). The reason for selecting such a coefficient for analysis was due to the fact that in most Polish buildings thermal resistance of walls results from technical norms from before January 2014. The findings of the numerical simulations were used to determine the maximum relative humidity of the internal air where water vapour condensation may occur on the internal surface of the corner. The calculations were crucial to making a qualitative assessment of the employed solutions. The findings showed that it is possible to improve the thermal functioning of a wall in the corner thanks to an additional layer of thermal insulation, for example in the form of an avant-corps, placed within the corner.
  • 其他摘要:The article presents an analysis of temperature on an internal wall surface. Simulations on the external wall corner were also carried out. It is a place where the surface temperature is lower due to the thermal bridge effect. The calculations were performed with the ADINA program used for numerical simulations on heat transfer through divisional structures. Finite element analysis was employed to solve the task. The calculations were performed for five case studies with different corner structures and different methods of insulation. The baseline was a wall with the heat transfer coefficient U = 0,30 W/(m2K). The reason for selecting such a coefficient for analysis was due to the fact that in most Polish buildings thermal resistance of walls results from technical norms from before January 2014. The findings of the numerical simulations were used to determine the maximum relative humidity of the internal air where water vapour condensation may occur on the internal surface of the corner. The calculations were crucial to making a qualitative assessment of the employed solutions. The findings showed that it is possible to improve the thermal functioning of a wall in the corner thanks to an additional layer of thermal insulation, for example in the form of an avant-corps, placed within the corner.
国家哲学社会科学文献中心版权所有