首页    期刊浏览 2025年06月25日 星期三
登录注册

文章基本信息

  • 标题:Experimental investigation of a heat pipe heat exchanger for heat recovery
  • 本地全文:下载
  • 作者:Anna Bryszewska-Mazurek ; Wojciech Mazurek
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:45
  • 页码:1-7
  • DOI:10.1051/e3sconf/20184500012
  • 出版社:EDP Sciences
  • 摘要:An air-to-air heat pipe heat exchanger has been designed, constructed and tested. Gravity–assisted wickless heat pipes (thermosiphons) were used to transfer heat from one air stream to another air stream, with a low temperature difference. A thermosiphon heat exchanger has its evaporation zone below the condensation zone. Heat pipes allow keeping a more uniform temperature in the heat transfer area. The heat exchanger consists of 20 copper tubes with circular copper fins on their outer surface. The tubes were arranged in a row and the air passed across the pipes. R245fa was used as a working fluid in the thermosiphons. Each heat pipe had a 40 cm evaporation section, a 20 cm adiabatic section and a 40 cm condensation section. The thermosiphon heat exchanger has been tested in different conditions of air stream parameters (flows, temperatures and humidity). The air face velocity ranged from 1,0 m/s to 4,0 m/s. The maximum thermal efficiency of the thermosiphon heat exchanger was between 26÷40%, depending on the air velocity. The freezing of moisture from indoor air was observed when the cold air temperature was below - 13oC.
  • 其他摘要:An air-to-air heat pipe heat exchanger has been designed, constructed and tested. Gravity-assisted wickless heat pipes (thermosiphons) were used to transfer heat from one air stream to another air stream, with a low temperature difference. A thermosiphon heat exchanger has its evaporation zone below the condensation zone. Heat pipes allow keeping a more uniform temperature in the heat transfer area. The heat exchanger consists of 20 copper tubes with circular copper fins on their outer surface. The tubes were arranged in a row and the air passed across the pipes. R245fa was used as a working fluid in the thermosiphons. Each heat pipe had a 40 cm evaporation section, a 20 cm adiabatic section and a 40 cm condensation section. The thermosiphon heat exchanger has been tested in different conditions of air stream parameters (flows, temperatures and humidity). The air face velocity ranged from 1,0 m/s to 4,0 m/s. The maximum thermal efficiency of the thermosiphon heat exchanger was between 26÷40%, depending on the air velocity. The freezing of moisture from indoor air was observed when the cold air temperature was below - 13°C.
国家哲学社会科学文献中心版权所有