首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:An Investigation of the Bacterial Influence of Acidithiobacillus Thiooxidans on Concrete Composites
  • 本地全文:下载
  • 作者:Vlasta Ondrejka Harbulakova ; Adriana Estokova ; Alena Luptakova
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:45
  • 页码:1-6
  • DOI:10.1051/e3sconf/20184500021
  • 出版社:EDP Sciences
  • 摘要:Vegetation and microorganisms present the biological factors that deteriorate concrete. These problems are very visible in places like sewage, underground and hydraulic structures, chemical plants, industrial structures, liquid-containing structures, agricultural structures or marine environments. The most significant biodeteriogens are the sulphur-oxidising bacteria Acidithiobacillus thiooxidans (A. thiooxidans) and the sulphatereducing bacteria (Desulfovibrio spp.) that are responsible for the so-called sulphuretum consortium. Microorganisms that produce sulphuric acid accelerate the deterioration of concrete sewer pipes in a process termed Microbially Induced Concrete Corrosion (MIC). The paper considers the assessment of the release of calcium and silicon from concrete composites with and without coal fly ash by sulphur-oxidizing bacteria. The concrete mixture contained coal fly ash as 5 wt. % and wt. 10 % cement replacement. Prepared composites were exposed to an aggressive microbial environment under laboratory conditions for 3 months. The pH values were measured and studied during this time period. A different resistance against MIC was observed for the concrete composites of different compositions. The highest amount of calcium leached-out from the concrete was in the case of the composites where 10 % cement was replaced by fly ash.
  • 其他摘要:Vegetation and microorganisms present the biological factors that deteriorate concrete. These problems are very visible in places like sewage, underground and hydraulic structures, chemical plants, industrial structures, liquid-containing structures, agricultural structures or marine environments. The most significant biodeteriogens are the sulphur-oxidising bacteria Acidithiobacillus thiooxidans (A. thiooxidans) and the sulphatereducing bacteria (Desulfovibrio spp.) that are responsible for the so-called sulphuretum consortium. Microorganisms that produce sulphuric acid accelerate the deterioration of concrete sewer pipes in a process termed Microbially Induced Concrete Corrosion (MIC). The paper considers the assessment of the release of calcium and silicon from concrete composites with and without coal fly ash by sulphur-oxidizing bacteria. The concrete mixture contained coal fly ash as 5 wt. % and wt. 10 % cement replacement. Prepared composites were exposed to an aggressive microbial environment under laboratory conditions for 3 months. The pH values were measured and studied during this time period. A different resistance against MIC was observed for the concrete composites of different compositions. The highest amount of calcium leached-out from the concrete was in the case of the composites where 10 % cement was replaced by fly ash.
国家哲学社会科学文献中心版权所有