首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Sediment balance of a cascade of alpine reservoirs based on multi-decadal data records
  • 本地全文:下载
  • 作者:Sebastián Guillén Ludeña ; Pedro Manso ; Anton J. Schleiss
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:40
  • 页码:1-8
  • DOI:10.1051/e3sconf/20184003012
  • 出版社:EDP Sciences
  • 摘要:Reservoir sedimentation is a major concern in the operational management of dams and appurtenant structures. The increasing volume of sediments deposited in reservoirs leads to a loss of water storage, undermining the purpose itself of the dam for human use or protection. The deposition of sediments (mostly fine) in the vicinity of the dam’s operational structures, such as bottom outlets and power intakes, may result in partial or total blockage of these structures. To cope with these problems, it is essential to determine the sediment balance of the reservoirs, by assessing the origin and quantity of the in- and out-fluxes of sediments. This paper presents a methodology to determine the annual sediment balance of a system of interlinked reservoirs across several decades, as well as its application to the alpine hydropower cascade formed by the Oberaar, Grimsel and Räterichsboden reservoirs located in Switzerland. At that aim, the annual sediment fluxes and the sedimentation rates of each reservoir were characterized. Also, the percentage of fine sediments (dm < 10 μm) included in the total sedimentation rate was estimated. The results reveal that the annual sedimentation rate of the lowermost reservoir of the system (Räterichsboden) is highly altered by the flushing operations of the reservoir upstream (Grimsel). Also, for the uppermost reservoir of the system (Oberaar), the volume of fine sediments deposited annually can reach up to 46% of the total sedimentation rate.
  • 其他摘要:Reservoir sedimentation is a major concern in the operational management of dams and appurtenant structures. The increasing volume of sediments deposited in reservoirs leads to a loss of water storage, undermining the purpose itself of the dam for human use or protection. The deposition of sediments (mostly fine) in the vicinity of the dam’s operational structures, such as bottom outlets and power intakes, may result in partial or total blockage of these structures. To cope with these problems, it is essential to determine the sediment balance of the reservoirs, by assessing the origin and quantity of the in- and out-fluxes of sediments. This paper presents a methodology to determine the annual sediment balance of a system of interlinked reservoirs across several decades, as well as its application to the alpine hydropower cascade formed by the Oberaar, Grimsel and Räterichsboden reservoirs located in Switzerland. At that aim, the annual sediment fluxes and the sedimentation rates of each reservoir were characterized. Also, the percentage of fine sediments (dm < 10 μm) included in the total sedimentation rate was estimated. The results reveal that the annual sedimentation rate of the lowermost reservoir of the system (Räterichsboden) is highly altered by the flushing operations of the reservoir upstream (Grimsel). Also, for the uppermost reservoir of the system (Oberaar), the volume of fine sediments deposited annually can reach up to 46% of the total sedimentation rate.
国家哲学社会科学文献中心版权所有