首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Phenomenology of meandering of a straight river
  • 本地全文:下载
  • 作者:Sk Zeeshan Ali ; Subhasish Dey
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:40
  • 页码:1-8
  • DOI:10.1051/e3sconf/20184005004
  • 出版社:EDP Sciences
  • 摘要:In this study, at first, we analyse the linear stability of a straight river. We find that the natural perturbation modes maintain an equilibrium state by confining themselves to a threshold wavenumber band. The effects of river aspect ratio, Shields number and relative roughness number on the wavenumber band are studied. Then, we present a phenomenological concept to probe the initiation of meandering of a straight river, which is governed by the counter-rotational motion of neighbouring large-scale eddies in succession to create the processes of alternating erosion and deposition of sediment grains of the riverbed. This concept is deemed to have adequately explained by a mathematical framework stemming from the turbulence phenomenology to obtain a quantitative insight. It is revealed that at the initiation of meandering of a river, the longitudinal riverbed slope obeys a universal scaling law with the river width, flow discharge and sediment grain size forming the riverbed. This universal scaling law is validated by the experimental data obtained from the natural and model rivers.
  • 其他摘要:In this study, at first, we analyse the linear stability of a straight river. We find that the natural perturbation modes maintain an equilibrium state by confining themselves to a threshold wavenumber band. The effects of river aspect ratio, Shields number and relative roughness number on the wavenumber band are studied. Then, we present a phenomenological concept to probe the initiation of meandering of a straight river, which is governed by the counter-rotational motion of neighbouring large-scale eddies in succession to create the processes of alternating erosion and deposition of sediment grains of the riverbed. This concept is deemed to have adequately explained by a mathematical framework stemming from the turbulence phenomenology to obtain a quantitative insight. It is revealed that at the initiation of meandering of a river, the longitudinal riverbed slope obeys a universal scaling law with the river width, flow discharge and sediment grain size forming the riverbed. This universal scaling law is validated by the experimental data obtained from the natural and model rivers.
国家哲学社会科学文献中心版权所有