首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:The PHO pathway involved in phosphate metabolism in Yeast for efficient phosphorus removal
  • 本地全文:下载
  • 作者:Mengfei Hu ; Liping Qiu ; Yan Wang
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:53
  • 页码:1-4
  • DOI:10.1051/e3sconf/20185304023
  • 出版社:EDP Sciences
  • 摘要:Phosphorus is one of the essential elements needed for the growth and reproduction of any organism. To improve the efficiency of biological phosphorus removal in sewage, it is very important to grasp the precise mechanism of biological phosphorus removal. Yeast is a single cell fungus and has a unique advantage in sewage treatment. Recent studies in the different types of yeast have revealed that there is a phosphate-responsive signal transduction (PHO) pathway to regulate phosphate-responsive genes for controlling phosphate absorption. In this review, the metabolic mechanisms and protein-protein interactions associated with the PHO pathway are highlighted firstly, and then several examples about improving the phosphorus removal efficiency of sewage by inducing gene mutation in yeast phosphorus metabolism was introduced. The aim is to provide new ideas for the realization of high-efficiency phosphorus recovery in nature.
  • 其他摘要:Phosphorus is one of the essential elements needed for the growth and reproduction of any organism. To improve the efficiency of biological phosphorus removal in sewage, it is very important to grasp the precise mechanism of biological phosphorus removal. Yeast is a single cell fungus and has a unique advantage in sewage treatment. Recent studies in the different types of yeast have revealed that there is a phosphate-responsive signal transduction (PHO) pathway to regulate phosphate-responsive genes for controlling phosphate absorption. In this review, the metabolic mechanisms and protein-protein interactions associated with the PHO pathway are highlighted firstly, and then several examples about improving the phosphorus removal efficiency of sewage by inducing gene mutation in yeast phosphorus metabolism was introduced. The aim is to provide new ideas for the realization of high-efficiency phosphorus recovery in nature.
国家哲学社会科学文献中心版权所有