标题:Enhancing the Capacity of the Indoor 60 GHz Band Via Modified Indoor Environments Using Ring Frequency Selective Surface Wallpapers and Path Loss Models
期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2018
卷号:8
期号:5
页码:3003-3020
DOI:10.11591/ijece.v8i5.pp3003-3020
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:The 60 GHz band has been selected for short-range communication systems to meet consumers’ needs for high data rates. However, this frequency is attenuated by obstacles. This study addresses the limitations of the 60 GHz band by modifying indoor environments with ring Frequency Selective Surfaces (FSSs) wallpaper, thereby increasing its utilization. The ring FSS wallpaper response at a 61.5 GHz frequency has been analyzed using both MATLAB and Computer Simulation Technology (CST) Microwave Studio (MWS) software. ‘Wireless InSite’ is also used to demonstrate enhanced wave propagation in a building modified with ring FSSs wallpaper. The demonstration is applied to Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) systems to verify the effectiveness of FSSs on such systems’ capacity. The effectiveness of the suggested modification over delay spread has been studied for the MIMO scenario, as well as the effect of the human body on capacity. Simulation results presented here show that modifying a building using ring FSS wallpaper is an attractive scheme for significantly improving the indoor 60 GHz wireless communications band. This paper also presents and compares two large-scale indoor propagation Path Loss Models (PLMs), the Close-In (CI) free space reference distance model and the Floating Intercept (FI) model. Data obtained from ‘Wireless InSite’ over distances ranging from 4 to 14.31 m is analyzed. Results show that the CI model provides good estimation and exhibits stable behavior over frequencies and distances, with a solid physical basis and less computational complexity when compared to the FI model.
其他摘要:The 60 GHz band has been selected for short-range communication systems to meet consumers’ needs for high data rates. However, this frequency is attenuated by obstacles. This study addresses the limitations of the 60 GHz band by modifying indoor environments with ring Frequency Selective Surfaces (FSSs) wallpaper, thereby increasing its utilization. The ring FSS wallpaper response at a 61.5 GHz frequency has been analyzed using both MATLAB and Computer Simulation Technology (CST) Microwave Studio (MWS) software. ‘Wireless InSite’ is also used to demonstrate enhanced wave propagation in a building modified with ring FSSs wallpaper. The demonstration is applied to Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) systems to verify the effectiveness of FSSs on such systems’ capacity. The effectiveness of the suggested modification over delay spread has been studied for the MIMO scenario, as well as the effect of the human body on capacity. Simulation results presented here show that modifying a building using ring FSS wallpaper is an attractive scheme for significantly improving the indoor 60 GHz wireless communications band. This paper also presents and compares two large-scale indoor propagation Path Loss Models (PLMs), the Close-In (CI) free space reference distance model and the Floating Intercept (FI) model. Data obtained from ‘Wireless InSite’ over distances ranging from 4 to 14.31 m is analyzed. Results show that the CI model provides good estimation and exhibits stable behavior over frequencies and distances, with a solid physical basis and less computational complexity when compared to the FI model.