首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Scattering Regimes for Underwater Optical Wireless Communications using Monte Carlo Simulation
  • 其他标题:Scattering Regimes for Underwater Optical Wireless Communications using Monte Carlo Simulation
  • 本地全文:下载
  • 作者:F. Jasman ; A. M. Zaiton ; Z. Ahmad
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2018
  • 卷号:8
  • 期号:4
  • 页码:2571-2577
  • DOI:10.11591/ijece.v8i4.pp2571-2577
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:Optical wireless communications has shown tremendous potential for underwater applications as it can provide higher bandwidth and better security compared to acoustic technologies. In this paper, an investigation on scattering regimes for underwater links using Monte Carlo simulation has been presented.While the focus of this paper is on diffuse links, the simulation results of collimated links is also provided for comparison purpose. Three types of water namely clear, coastal and turbid water are being used in the simulation. It is shown that the effect of scattering on the path loss cannot be accurately modeled by the existing channel model; ie. Beers-Lambert (BL) law. It has been shown that the distance at which the unscattered light drops to zero can be used to estimate the transition point for the scattering regimes in case of diffuse links. The transition point for diffuse links in coastal water and turbid water can be estimated to be around 22 m and 4 m respectively. Further analysis on the scattering order probability at different scattering regimes illustrates how scattering is affected by beam size, water turbidity and distance. From the frequency response plot, it is estimated that the bandwidth of several order of GHz can be achieved when the links are operating in the minimal scattering region and will reduce to several hundreds of MHz when the link is operating in multiple scattering region.
  • 其他摘要:Optical wireless communications has shown tremendous potential for underwater applications as it can provide higher bandwidth and better security compared to acoustic technologies. In this paper, an investigation on scattering regimes for underwater links using Monte Carlo simulation has been presented.While the focus of this paper is on diffuse links, the simulation results of collimated links is also provided for comparison purpose. Three types of water namely clear, coastal and turbid water are being used in the simulation. It is shown that the effect of scattering on the path loss cannot be accurately modeled by the existing channel model; ie. Beers-Lambert (BL) law. It has been shown that the distance at which the unscattered light drops to zero can be used to estimate the transition point for the scattering regimes in case of diffuse links. The transition point for diffuse links in coastal water and turbid water can be estimated to be around 22 m and 4 m respectively. Further analysis on the scattering order probability at different scattering regimes illustrates how scattering is affected by beam size, water turbidity and distance. From the frequency response plot, it is estimated that the bandwidth of several order of GHz can be achieved when the links are operating in the minimal scattering region and will reduce to several hundreds of MHz when the link is operating in multiple scattering region.
  • 关键词:Underwater optical wireless Monte Carlo Scattering regimes Transition point Channel bandwidth
国家哲学社会科学文献中心版权所有