期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2018
卷号:8
期号:3
页码:1870-1874
DOI:10.11591/ijece.v8i3.pp1870-1874
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Detection and correction of faulty elements in a linear array have great importance in radar, sonar, mobile communications and satellite. Due to single element failure, the whole radiation pattern damage in terms of side lobes level and nulls. Once we have detect the position of defective element, then correction method is applied to achieve the desired pattern. In this work, we introduce a nature inspired meta-heuristic cuckoo search algorithm to diagnose the position of defective elements in a linear array. The nature inspired cuckoo search algorithm is new to the optimization family and is used first time for fault detection in an array antenna. Cuckoo search algorithm is a global search optimization technique. The cost function is used as a fitness function which defines an error between the degraded far field power pattern and the estimated one. The proposed technique is used effectively for the diagnosis of complete, as well as, for partial faulty elements position. Different simulation results are evaluated for 40 elements Taylor pattern to validate and check the performance of the proposed technique.
其他摘要:Detection and correction of faulty elements in a linear array have great importance in radar, sonar, mobile communications and satellite. Due to single element failure, the whole radiation pattern damage in terms of side lobes level and nulls. Once we have detect the position of defective element, then correction method is applied to achieve the desired pattern. In this work, we introduce a nature inspired meta-heuristic cuckoo search algorithm to diagnose the position of defective elements in a linear array. The nature inspired cuckoo search algorithm is new to the optimization family and is used first time for fault detection in an array antenna. Cuckoo search algorithm is a global search optimization technique. The cost function is used as a fitness function which defines an error between the degraded far field power pattern and the estimated one. The proposed technique is used effectively for the diagnosis of complete, as well as, for partial faulty elements position. Different simulation results are evaluated for 40 elements Taylor pattern to validate and check the performance of the proposed technique.