期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2018
卷号:8
期号:2
页码:658-665
DOI:10.11591/ijece.v8i2.pp658-665
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:In this study, we are proposing a practical way for human identification based on a new biometric method. The new method is built on the use of the electrocardiogram (ECG) signal waveform features, which are produced from the process of acquiring electrical activities of the heart by using electrodes placed on the body. This process is launched over a period of time by using a recording device to read and store the ECG signal. On the contrary of other biometrics method like voice, fingerprint and iris scan, ECG signal cannot be copied or manipulated. The first operation for our system is to record a portion of 30 seconds out of whole ECG signal of a certain user in order to register it as user template in the system. Then the system will take 7 to 9 seconds in authenticating the template using template matching techniques. 44 subjects’ raw ECG data were downloaded from Physionet website repository. We used a template matching technique for the authentication process and Linear SVM algorithm for the classification task. The accuracy rate was 97.2% for the authentication process and 98.6% for the classification task; with false acceptance rate 1.21%.
其他摘要:In this study, we are proposing a practical way for human identification based on a new biometric method. The new method is built on the use of the electrocardiogram (ECG) signal waveform features, which are produced from the process of acquiring electrical activities of the heart by using electrodes placed on the body. This process is launched over a period of time by using a recording device to read and store the ECG signal. On the contrary of other biometrics method like voice, fingerprint and iris scan, ECG signal cannot be copied or manipulated. The first operation for our system is to record a portion of 30 seconds out of whole ECG signal of a certain user in order to register it as user template in the system. Then the system will take 7 to 9 seconds in authenticating the template using template matching techniques. 44 subjects’ raw ECG data were downloaded from Physionet website repository. We used a template matching technique for the authentication process and Linear SVM algorithm for the classification task. The accuracy rate was 97.2% for the authentication process and 98.6% for the classification task; with false acceptance rate 1.21%.