期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2018
卷号:8
期号:2
页码:1010-1017
DOI:10.11591/ijece.v8i2.pp1010-1017
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:This article investigates solution for the biggest problem of the Direct Torque Control on the asynchronous machine to have the high dynamic performance with very simple hysteresis control scheme. The Conventional Direct Torque Control (CDTC) suffers from some drawbacks such as high current, flux and torque ripple, as well as flux control at very low speed. In this paper, we propose an intelligent approach to improve the direct torque control of induction machine which is an artificial neural networks control. The principle, the numerical procedure and the performances of this method are presented. Simulations results show that the proposed ANN-DTC strategy effectively reduces the torque and flux ripples at low switching frequency, compared with Fuzzy Logic DTC and The Conventional DTC.
其他摘要:This article investigates solution for the biggest problem of the Direct Torque Control on the asynchronous machine to have the high dynamic performance with very simple hysteresis control scheme. The Conventional Direct Torque Control (CDTC) suffers from some drawbacks such as high current, flux and torque ripple, as well as flux control at very low speed. In this paper, we propose an intelligent approach to improve the direct torque control of induction machine which is an artificial neural networks control. The principle, the numerical procedure and the performances of this method are presented. Simulations results show that the proposed ANN-DTC strategy effectively reduces the torque and flux ripples at low switching frequency, compared with Fuzzy Logic DTC and The Conventional DTC.