期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2018
卷号:8
期号:1
页码:60-69
DOI:10.11591/ijece.v8i1.pp60-69
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:The very dense breast of mammogram image makes the Radiologists often have difficulties in interpreting the mammography objectively and accurately. One of the key success factors of computer-aided diagnosis (CADx) system is the use of the right features. Therefore, this research emphasizes on the feature selection process by performing the data mining on the results of mammogram image feature extraction. There are two algorithms used to perform the mining, the decision tree and the rule induction. Furthermore, the selected features produced by the algorithms are tested using classification algorithms: k-nearest neighbors, decision tree, and naive bayesian with the scheme of 10-fold cross validation using stratified sampling way. There are five descriptors that are the best features and have contributed in determining the classification of benign and malignant lesions as follows: slice, integrated density, area fraction, model gray value, and center of mass. The best classification results based on the five features are generated by the decision tree algorithm with accuracy, sensitivity, specificity, FPR, and TPR of 93.18%; 87.5%; 3.89%; 6.33% and 92.11% respectively.
其他摘要:The very dense breast of mammogram image makes the Radiologists often have difficulties in interpreting the mammography objectively and accurately. One of the key success factors of computer-aided diagnosis (CADx) system is the use of the right features. Therefore, this research emphasizes on the feature selection process by performing the data mining on the results of mammogram image feature extraction. There are two algorithms used to perform the mining, the decision tree and the rule induction. Furthermore, the selected features produced by the algorithms are tested using classification algorithms: k-nearest neighbors, decision tree, and naive bayesian with the scheme of 10-fold cross validation using stratified sampling way. There are five descriptors that are the best features and have contributed in determining the classification of benign and malignant lesions as follows: slice, integrated density, area fraction, model gray value, and center of mass. The best classification results based on the five features are generated by the decision tree algorithm with accuracy, sensitivity, specificity, FPR, and TPR of 93.18%; 87.5%; 3.89%; 6.33% and 92.11% respectively.