期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2017
卷号:7
期号:6
页码:3037-3045
DOI:10.11591/ijece.v7i6.pp3037-3045
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Pedestrian detection is one of the important features in autonomous ground vehicle (AGV). It ensures the capability for safety navigation in urban environment. Therefore, the detection accuracy became a crucial part which leads to implementation using Laser Range Finder (LRF) for better data representation. In this study, an improved laser configuration and fusion technique is introduced by implementation of triple LRFs in two layers with Pedestrian Data Analysis (PDA) to recognize multiple pedestrians. The PDA integrates various features from feature extraction process for all clusters and fusion of multiple layers for better recognition. The experiments were conducted in various occlusion scenarios such as intersection, closed-pedestrian and combine scenarios. The analysis of the laser fusion and PDA for all scenarios showed an improvement of detection where the pedestrians were represented by various detection categories which solve occlusion issues when low numberof laser data were obtained.
其他摘要:Pedestrian detection is one of the important features in autonomous ground vehicle (AGV). It ensures the capability for safety navigation in urban environment. Therefore, the detection accuracy became a crucial part which leads to implementation using Laser Range Finder (LRF) for better data representation. In this study, an improved laser configuration and fusion technique is introduced by implementation of triple LRFs in two layers with Pedestrian Data Analysis (PDA) to recognize multiple pedestrians. The PDA integrates various features from feature extraction process for all clusters and fusion of multiple layers for better recognition. The experiments were conducted in various occlusion scenarios such as intersection, closed-pedestrian and combine scenarios. The analysis of the laser fusion and PDA for all scenarios showed an improvement of detection where the pedestrians were represented by various detection categories which solve occlusion issues when low number of laser data were obtained.