首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Change Detection from Remotely Sensed Images Based on Stationary Wavelet Transform
  • 其他标题:Change Detection from Remotely Sensed Images Based on Stationary Wavelet Transform
  • 本地全文:下载
  • 作者:Abhishek Sharma ; Tarun Gulati
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2017
  • 卷号:7
  • 期号:6
  • 页码:3395-3401
  • DOI:10.11591/ijece.v7i6.pp3395-3401
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:The major issue of concern in change detection process is the accuracy of the algorithm to recover changed and unchanged pixels. The fusion rules presented in the existing methods could not integrate the features accurately which results in more number of false alarms and speckle noise in the output image. This paper proposes an algorithm which fuses two multi-temporal images through proposed set of fusion rules in stationary wavelet transform. In the first step, the source images obtained from log ratio and mean ratio operators are decomposed into three high frequency sub-bands and one low frequency sub-band by stationary wavelet transform. Then, proposed fusion rules for low and high frequency sub-bands are applied on the coefficient maps to get the fused wavelet coefficients map. The fused image is recovered by applying the inverse stationary wavelet transform (ISWT) on the fused coefficient map. Finally, the changed and unchanged areas are classified using Fuzzy c means clustering. The performance of the algorithm is calculated in terms of percentage correct classification (PCC), overall error (OE) and Kappa coefficient (Kc). The qualitative and quantitative results prove that the proposed method offers least error, highest accuracy and Kappa value as compare to its preexistences.
  • 其他摘要:The major issue of concern in change detection process is the accuracy of the algorithm to recover changed and unchanged pixels. The fusion rules presented in the existing methods could not integrate the features accurately which results in more number of false alarms and speckle noise in the output image. This paper proposes an algorithm which fuses two multi-temporal images through proposed set of fusion rules in stationary wavelet transform. In the first step, the source images obtained from log ratio and mean ratio operators are decomposed into three high frequency sub-bands and one low frequency sub-band by stationary wavelet transform. Then, proposed fusion rules for low and high frequency sub-bands are applied on the coefficient maps to get the fused wavelet coefficients map. The fused image is recovered by applying the inverse stationary wavelet transform (ISWT) on the fused coefficient map. Finally, the changed and unchanged areas are classified using Fuzzy c means clustering. The performance of the algorithm is calculated in terms of percentage correct classification (PCC), overall error (OE) and Kappa coefficient (K c ). The qualitative and quantitative results prove that the proposed method offers least error, highest accuracy and Kappa value as compare to its preexistences.
  • 关键词:Electronics and Communication;change detection; stationary wavelet transform; image fusion; log ratio; mean ratio; fuzzy clustering
国家哲学社会科学文献中心版权所有