期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2017
卷号:7
期号:5
页码:2382-2391
DOI:10.11591/ijece.v7i5.pp2382-2391
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Earlier economic emission dispatch methods for optimizing emission level comprising carbon monoxide, nitrous oxide and sulpher dioxide in thermal generation, made use of soft computing techniques like fuzzy,neural network,evolutionary programming,differential evolution and particle swarm optimization etc..The above methods incurred comparatively more transmission loss.So looking into the nonlinear load behavior of unbalanced systems following differential load pattern prevalent in tropical countries like India,Pakistan and Bangladesh etc.,the erratic variation of enhanced power demand is of immense importance which is included in this paper vide multi objective directed bee colony optimization with enhanced power demand to optimize transmission losses to a desired level.In the current dissertation making use of multi objective directed bee colony optimization with enhanced power demand technique the emission level versus cost of generation has been displayed vide figure-3 & figure-4 and this result has been compared with other dispatch methods using valve point loading(VPL) and multi objective directed bee colony optimization with & without transmission loss.
其他摘要:Earlier economic emission dispatch methods for optimizing emission level comprising carbon monoxide, nitrous oxide and sulpher dioxide in thermal generation, made use of soft computing techniques like fuzzy,neural network,evolutionary programming,differential evolution and particle swarm optimization etc..The above methods incurred comparatively more transmission loss.So looking into the nonlinear load behavior of unbalanced systems following differential load pattern prevalent in tropical countries like India,Pakistan and Bangladesh etc.,the erratic variation of enhanced power demand is of immense importance which is included in this paper vide multi objective directed bee colony optimization with enhanced power demand to optimize transmission losses to a desired level.In the current dissertation making use of multi objective directed bee colony optimization with enhanced power demand technique the emission level versus cost of generation has been displayed vide figure-3 & figure-4 and this result has been compared with other dispatch methods using valve point loading(VPL) and multi objective directed bee colony optimization with & without transmission loss.