期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2017
卷号:7
期号:5
页码:2565-2673
DOI:10.11591/ijece.v7i5.pp2565-2673
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Segmentation of the video sequence by detecting shot changes is essential for video analysis, indexing and retrieval. In this context, a shot boundary detection algorithm is proposed in this paper based on the scale invariant feature transform (SIFT). The first step of our method consists on a top down search scheme to detect the locations of transitions by comparing the ratio of matched features extracted via SIFT for every RGB channel of video frames. The overview step provides the locations of boundaries. Secondly, a moving average calculation is performed to determine the type of transition. The proposed method can be used for detecting gradual transitions and abrupt changes without requiring any training of the video content in advance. Experiments have been conducted on a multi type video database and show that this algorithm achieves well performances.
其他摘要:Segmentation of the video sequence by detecting shot changes is essential for video analysis, indexing and retrieval. In this context, a shot boundary detection algorithm is proposed in this paper based on the scale invariant feature transform (SIFT). The first step of our method consists on a top down search scheme to detect the locations of transitions by comparing the ratio of matched features extracted via SIFT for every RGB channel of video frames. The overview step provides the locations of boundaries. Secondly, a moving average calculation is performed to determine the type of transition. The proposed method can be used for detecting gradual transitions and abrupt changes without requiring any training of the video content in advance. Experiments have been conducted on a multi type video database and show that this algorithm achieves well performances.