期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2017
卷号:7
期号:4
页码:1789-1796
DOI:10.11591/ijece.v7i4.pp1789-1796
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:PEMFC powered Hybrid vehicle system is one of an interesting issue for the industry due to its high performances. The PEMFC cannot certainly ensure a sustained required energy in some scenarios. To solve this problem related to PEMFC transient response, a Hybrid Electrical Storage System (HES) is a potential candidate for a solution. The proposed Hybrid Storage system is comprised of the battery (BT) and a Super-Capacitor (SC) components. These components are included to control the hydrogen variations and the fast peak powers scenarios respectively. The SC is used to control PEMFC and the BT slow dynamics at the same times. An accurate Multi-Ways Energy Management System (MW-EMS) is proposed which aims to cooperate with the system components through SC/BT state of charge and a flux calculation. The simulation results are discussed and assessed using MATLAB/ Simulink.
其他摘要:PEMFC powered Hybrid vehicle system is one of an interesting issue for the industry due to its high performances. The PEMFC cannot certainly ensure a sustained required energy in some scenarios. To solve this problem related to PEMFC transient response, a Hybrid Electrical Storage System (HES) is a potential candidate for a solution. The proposed Hybrid Storage system is comprised of the battery (BT) and a Super-Capacitor (SC) components. These components are included to control the hydrogen variations and the fast peak powers scenarios respectively. The SC is used to control PEMFC and the BT slow dynamics at the same times. An accurate Multi-Ways Energy Management System (MW-EMS) is proposed which aims to cooperate with the system components through SC/BT state of charge and a flux calculation. The simulation results are discussed and assessed using MATLAB/ Simulink.
关键词:battery; energy management system; hybrid energy storage; PEMFC; supercapacitor