期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2017
卷号:7
期号:4
页码:2223-2231
DOI:10.11591/ijece.v7i4.pp2223-2231
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:The major intention of higher education institutions is to supply quality education to its students. One approach to get maximum level of quality in higher education system is by discovering knowledge for prediction regarding the internal assessment and end semester examination. The projected work intends to approach this objective by taking the advantage of fuzzy inference technique to classify student scores data according to the level of their performance. In this paper, student’s performance is evaluated using fuzzy association rule mining that describes Prediction of performance of the students at the end of the semester, on the basis of previous database like Attendance, Midsem Marks, Previous semester marks and Previous Academic Records were collected from the student’s previous database, to identify those students which needed individual attention to decrease fail ration and taking suitable action for the next semester examination.
其他摘要:The major intention of higher education institutions is to supply quality education to its students. One approach to get maximum level of quality in higher education system is by discovering knowledge for prediction regarding the internal assessment and end semester examination. The projected work intends to approach this objective by taking the advantage of fuzzy inference technique to classify student scores data according to the level of their performance. In this paper, student’s performance is evaluated using fuzzy association rule mining that describes Prediction of performance of the students at the end of the semester, on the basis of previous database like Attendance, Midsem Marks, Previous semester marks and Previous Academic Records were collected from the student’s previous database, to identify those students which needed individual attention to decrease fail ration and taking suitable action for the next semester examination.
关键词:apriori-like algorithm; classification; education data mining ; fuzzy association mining ; knowledge discovering