首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Improved Algorithm for Pathological and Normal Voices Identification
  • 其他标题:Improved Algorithm for Pathological and Normal Voices Identification
  • 本地全文:下载
  • 作者:Brahim Sabir ; Fatima Rouda ; Yassine Khazri
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:238-243
  • DOI:10.11591/ijece.v7i1.pp238-243
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:There are a lot of papers on automatic classification between normal and pathological voices, but they have the lack in the degree of severity estimation of the identified voice disorders. Building a model of pathological and normal voices identification, that can also evaluate the degree of severity of the identified voice disorders among students. In the present work, we present an automatic classifier using acoustical measurements on registered sustained vowels /a/ and pattern recognition tools based on neural networks. The training set was done by classifying students’ recorded voices based on threshold from the literature. We retrieve the pitch, jitter, shimmer and harmonic-to-noise ratio values of the speech utterance /a/, which constitute the input vector of the neural network. The degree of severity is estimated to evaluate how the parameters are far from the standard values based on the percent of normal and pathological values. In this work, the base data used for testing the proposed algorithm of the neural network is formed by healthy and pathological voices from German database of voice disorders. The performance of the proposed algorithm is evaluated in a term of the accuracy (97.9%), sensitivity (1.6%), and specificity (95.1%). The classification rate is 90% for normal class and 95% for pathological class.
  • 其他摘要:There are a lot of papers on automatic classification between normal and pathological voices, but they have the lack in the degree of severity estimation of the identified voice disorders. Building a model of pathological and normal voices identification, that can also evaluate the degree of severity of the identified voice disorders among students. In the present work, we present an automatic classifier using acoustical measurements on registered sustained vowels /a/ and pattern recognition tools based on neural networks. The training set was done by classifying students’ recorded voices based on threshold from the literature. We retrieve the pitch, jitter, shimmer and harmonic-to-noise ratio values of the speech utterance /a/, which constitute the input vector of the neural network. The degree of severity is estimated to evaluate how the parameters are far from the standard values based on the percent of normal and pathological values. In this work, the base data used for testing the proposed algorithm of the neural network is formed by healthy and pathological voices from German database of voice disorders. The performance of the proposed algorithm is evaluated in a term of the accuracy (97.9%), sensitivity (1.6%), and specificity (95.1%). The classification rate is 90% for normal class and 95% for pathological class.
  • 关键词:Acoustics; ANN computing;classification methods; communication disorders; neural networks; voice disorders
国家哲学社会科学文献中心版权所有