期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2015
卷号:5
期号:5
页码:1035-1044
DOI:10.11591/ijece.v5i5.pp1035-1044
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Fuzzy based segmentation algorithms are known to be performing well on medical images. Spatial fuzzy C-means (SFCM) is broadly used for medical image segmentation but it suffers from optimum selection of seed point initialization which is done either manually or randomly. In this paper, an enhanced SFCM algorithm is proposed by optimizing the SFCM initial point values. In this method in order to increasing the algorithm speed first the approximate initial values are determined by calculating the histogram of the original image. Then by utilizing the GWO algorithm the optimum initial values could be achieved. Finally By using the achieved initial values, the proposed method shows the significant improvement in segmentation results. Also the proposed method performs faster than previous algorithm i.e. SFCM and has better convergence. Moreover, it has noticeably improved the clustering effect.
其他摘要:Fuzzy based segmentation algorithms are known to be performing well on medical images. Spatial fuzzy C-means (SFCM) is broadly used for medical image segmentation but it suffers from optimum selection of seed point initialization which is done either manually or randomly. In this paper, an enhanced SFCM algorithm is proposed by optimizing the SFCM initial point values. In this method in order to increasing the algorithm speed first the approximate initial values are determined by calculating the histogram of the original image. Then by utilizing the GWO algorithm the optimum initial values could be achieved. Finally By using the achieved initial values, the proposed method shows the significant improvement in segmentation results. Also the proposed method performs faster than previous algorithm i.e. SFCM and has better convergence. Moreover, it has noticeably improved the clustering effect.
关键词:Computer and Informatics;Spatia Fuzzy C-means; Segmentation; GWO; MRI Image; Brain