期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2015
卷号:5
期号:4
页码:701-713
DOI:10.11591/ijece.v5i4.pp701-713
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Reducing energy consumption is a critical issue in the design of battery-powered real time systems to prolong battery life. With dynamic voltage scaling (DVS) processors, energy consumption can be reduced efficiently by making appropriate decisions on the processor speed/voltage during the scheduling of real time tasks. Scheduling decision is usually based on parameters which are assumed to be crisp. However, in many circumstances the values of these parameters are vague. The vagueness of parameters suggests that to develop a fuzzy logic approach to reduce energy consumption by determining the appropriate supply-voltage/speed of the processor provided that timing constraints are guaranteed. Intensive simulated experiments and qualitative comparisons with the most related literature have been conducted in the context of dependent real-time tasks. Experimental results have shown that the proposed fuzzy scheduler saves more energy and creates feasible schedules for real time tasks. It also considers tasks priorities which cause higher system utilization and lower deadline miss time.
其他摘要:Reducing energy consumption is a critical issue in the design of battery-powered real time systems to prolong battery life. With dynamic voltage scaling (DVS) processors, energy consumption can be reduced efficiently by making appropriate decisions on the processor speed/voltage during the scheduling of real time tasks. Scheduling decision is usually based on parameters which are assumed to be crisp. However, in many circumstances the values of these parameters are vague. The vagueness of parameters suggests that to develop a fuzzy logic approach to reduce energy consumption by determining the appropriate supply-voltage/speed of the processor provided that timing constraints are guaranteed. Intensive simulated experiments and qualitative comparisons with the most related literature have been conducted in the context of dependent real-time tasks. Experimental results have shown that the proposed fuzzy scheduler saves more energy and creates feasible schedules for real time tasks. It also considers tasks priorities which cause higher system utilization and lower deadline miss time.