首页    期刊浏览 2025年04月19日 星期六
登录注册

文章基本信息

  • 标题:Left and Right Hand Movements EEG Signals Classification Using Wavelet Transform and Probabilistic Neural Network
  • 本地全文:下载
  • 作者:A. B. M. Aowlad Hossain ; Md. Wasiur Rahman ; Manjurul Ahsan Riheen
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • 页码:92-101
  • DOI:10.11591/ijece.v5i1.pp92-101
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:Electroencephalogram (EEG) signals have great importance in the area of brain-computer interface (BCI) which has diverse applications ranging from medicine to entertainment. BCI acquires brain signals, extracts informative features and generates control signals from the knowledge of these features for functioning of external devices. The objective of this work is twofold. Firstly, to extract suitable features related to hand movements and secondly, to discriminate the left and right hand movements signals finding effective classifier. This work is a continuation of our previous study where beta band was found compatible for hand movement analysis. The discrete wavelet transform (DWT) has been used to separate beta band of the EEG signal in order to extract features. The performance of a probabilistic neural network (PNN) is investigated to find better classifier of left and right hand movements EEG signals and compared with classical back propagation based neural network. The obtained results shows that PNN (99.1%) has better classification rate than the BP (88.9%). The results of this study are expected to be helpful in brain computer interfacing for hand movements related bio-rehabilitation applications.
  • 其他摘要:Electroencephalogram (EEG) signals have great importance in the area of brain-computer interface (BCI) which has diverse applications ranging from medicine to entertainment. BCI acquires brain signals, extracts informative features and generates control signals from the knowledge of these features for functioning of external devices. The objective of this work is twofold. Firstly, to extract suitable features related to hand movements and secondly, to discriminate the left and right hand movements signals finding effective classifier. This work is a continuation of our previous study where beta band was found compatible for hand movement analysis. The discrete wavelet transform (DWT) has been used to separate beta band of the EEG signal in order to extract features. The performance of a probabilistic neural network (PNN) is investigated to find better classifier of left and right hand movements EEG signals and compared with classical back propagation based neural network. The obtained results shows that PNN (99.1%) has better classification rate than the BP (88.9%). The results of this study are expected to be helpful in brain computer interfacing for hand movements related bio-rehabilitation applications.
国家哲学社会科学文献中心版权所有