期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2014
卷号:4
期号:4
页码:561-572
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Assessment of blood vessels in retinal images is an important factor for many medical disorders. The changes in the retinal vessels due to the pathologies can be easily identified by segmenting the retinal vessels. Segmentation of retinal vessels is done to identify the early diagnosis of the disease like glaucoma, diabetic retinopathy, macular degeneration, hypertensive retinopathy and arteriosclerosis. In this paper, we propose an automatic blood vessel segmentation method. The proposed algorithm starts with the extraction of blood vessel centerline pixels. The final segmentation is obtained using an iterative region growing method that merges the binary images resulting from centerline detection part with the image resulting from fuzzy vessel segmentation part. In this proposed algorithm, the blood vessel is enhanced using modified morphological operations and the salt and pepper noises are removed from retinal images using Adaptive Fuzzy Switching Median filter. This method is applied on two publicly available databases, the DRIVE and the STARE and the experimental results obtained by using green channel images have been presented and compared with recently published methods. The results demonstrate that our algorithm is very effective method to detect retinal blood vessels.DOI:http://dx.doi.org/10.11591/ijece.v4i4.6253
其他摘要:Assessment of blood vessels in retinal images is an important factor for many medical disorders. The changes in the retinal vessels due to the pathologies can be easily identified by segmenting the retinal vessels. Segmentation of retinal vessels is done to identify the early diagnosis of the disease like glaucoma, diabetic retinopathy, macular degeneration, hypertensive retinopathy and arteriosclerosis. In this paper, we propose an automatic blood vessel segmentation method. The proposed algorithm starts with the extraction of blood vessel centerline pixels. The final segmentation is obtained using an iterative region growing method that merges the binary images resulting from centerline detection part with the image resulting from fuzzy vessel segmentation part. In this proposed algorithm, the blood vessel is enhanced using modified morphological operations and the salt and pepper noises are removed from retinal images using Adaptive Fuzzy Switching Median filter. This method is applied on two publicly available databases, the DRIVE and the STARE and the experimental results obtained by using green channel images have been presented and compared with recently published methods. The results demonstrate that our algorithm is very effective method to detect retinal blood vessels. DOI: http://dx.doi.org/10.11591/ijece.v4i4.6253