期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2014
卷号:4
期号:4
页码:631-636
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Distributed data processing is a major field in nowadays applications. Many applications collect and process data from distributed nodes to gain overall results. Large amount of data transfer and network delay made data processing in a centralized manner a hard operation representing an important problem. A very common way to solve this problem is ranking queries. Ranking or top- k queries concentrate only on the highest ranked tuples according to user's interest. Another issue in most nowadays applications is data uncertainty. Many techniques were introduced for modeling, managing, and processing uncertain databases. Although these techniques were efficient, they didn't deal with distributed data uncertainty. This paper deals with both data uncertainty and distribution based on ranking queries. A novel framework is proposed for ranking distributed uncertain data. The framework has a suite of novel algorithms for ranking data and monitoring updates. These algorithms help in reducing the communication rounds used and amount of data transmitted while achieving efficient and effective ranking. Experimental results show that the proposed framework has a great impact in reducing communication cost compared to other techniques. DOI: http://dx.doi.org/10.11591/ijece.v4i4.5920
其他摘要:Distributed data processing is a major field in nowadays applications. Many applications collect and process data from distributed nodes to gain overall results. Large amount of data transfer and network delay made data processing in a centralized manner a hard operation representing an important problem. A very common way to solve this problem is ranking queries. Ranking or top- k queries concentrate only on the highest ranked tuples according to user's interest. Another issue in most nowadays applications is data uncertainty. Many techniques were introduced for modeling, managing, and processing uncertain databases. Although these techniques were efficient, they didn't deal with distributed data uncertainty. This paper deals with both data uncertainty and distribution based on ranking queries. A novel framework is proposed for ranking distributed uncertain data. The framework has a suite of novel algorithms for ranking data and monitoring updates. These algorithms help in reducing the communication rounds used and amount of data transmitted while achieving efficient and effective ranking. Experimental results show that the proposed framework has a great impact in reducing communication cost compared to other techniques. DOI: http://dx.doi.org/10.11591/ijece.v4i4.5920