摘要:To explore new protective measure against visceral leishmaniasis, reverse vaccinology approach was employed to identify key immunogenic regions which can mediate long-term immunity. In-depth computational analysis revealed nine promiscuous epitopes which can possibly be presented by 46 human leukocyte antigen, thereby broadening the worldwide population up to 94.16%. This is of reasonable significance that most of the epitopes shared 100% sequence homology with other Leishmania species and could evoke a common pattern of protective immune response. Transporter associated with antigen processing binding affinity, molecular docking approach followed by dynamics simulation and human leukocyte antigen stabilization assay suggested that the best five optimal set of epitopes bind in between α1 and α2 binding groove with sufficient affinity and stability which allows the translocation of intact epitope to the cell surface. Fascinatingly, the human leukocyte antigen stabilization assay exhibited a modest correlation with the positive immunogenicity score predicted by class I pMHC immunogenicity predictor. A support for this notion came from ELISA and FACS analysis where the epitopes as a cocktail induced CD8+ IFN-γ and Granzyme B levels significantly in treated visceral leishmaniasis subject which suggests the immunogenic ability of the selected epitopes.