首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Experimental and Computational Studies on the Basic Transmission Properties of Electromagnetic Waves in Softmaterial Waveguides
  • 本地全文:下载
  • 作者:Jingjing Xu ; Yuanyuan Xu ; Weiqiang Sun
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:13824
  • DOI:10.1038/s41598-018-32345-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Conventional waveguides are usually made of metallic materials, and they are effective pathways for the transmission of electromagnetic waves. A “ Softmaterial waveguide ”, by contrast, is supposed to be made of dielectric material and ionic fluids. In this work, by means of both experiment and computational simulation we examined one kind of softmaterial waveguide, which has the configuration of ionic fluids filled in and out of a dielectric tube. We investigated configurations with varied parameters, i.e., tube thickness from 0.2 mm to 5.0 mm, tube length of 2.0–12.0 cm, ionic concentration covering 4 orders of magnitude from 0.0002–2.0 mol/L, frequency of 10 Hz to 100 MHz for sine wave excitations, pulse duration of 5 ns to 100 ms for excitation pulses. We also mimicked the myelin sheath structure in myelinated axons in simulation. Both experimental and simulation results consistently showed a clear confinement effect for the energy flux of transmitting electromagnetic waves inside the dielectric tube, strongly supporting the model of softmaterail waveguide . The results revealed that the softmaterial waveguide had a low-pass nature, where the intensity of transmitted signals saturated at a duration of 10–100 μs for pulses, or cut off at frequency of 10–100 kHz for sine waves. And, the transmission efficiency increased with the thickness of the dielectric layer, as well as ion concentration of the solution. The results may help for a better understanding various electrical communication behaviors observed in biosystems, where a natural lipid membrane with bilateral fluids was suggested as the efficient pathway for pulsed neural impulses in a way similar to soliton-like electromagnetic pulses transmitting in a softmaterial waveguide.
国家哲学社会科学文献中心版权所有