摘要:Thermoresponsive gels containing gold nanoparticles (AuNPs) were prepared using Pluronic®127 alone (F1) and with hydroxypropyl methylcellulose (F2) at ratios of 15% w/w and 15:1% w/w, respectively. AuNPs were evaluated for particle size, zeta-potential, polydispersity index (PDI), morphology and XRD pattern. AuNP-containing thermoresponsive gels were investigated for their gelation temperature, gel strength, bio-adhesive force, viscosity, drug content, in vitro release and ex-vivo permeation, in addition to in vitro antibacterial activity against bacteria found in burn infections, Staphylococcus aureus . In vivo burn healing and antibacterial activities were also investigated and compared with those of a commercial product using burn-induced infected wounds in mice. Spherical AuNPs sized 28.9–37.65 nm displayed a surface plasmon resonance band at 522 nm, a PDI of 0.461, and a zeta potential of 34.8 mV with a negative surface charge. F1 and F2 showed gelation temperatures of 37.2 °C and 32.3 °C, bio-adhesive forces of 2.45 ± 0.52 and 4.76 ± 0.84 dyne/cm2, viscosities of 10,165 ± 1.54 and 14,213 ± 2.31 cP, and gel strengths between 7.4 and 10.3 sec, respectively. The in vitro release values of F1 and F2 were 100% and 98.03% after 6 h, with permeation flux values of (J1) 0.2974 ± 2.85 and (J2) 0.2649 ± 1.43 (µg/cm2·h), respectively. The formulations showed antibacterial activity with the highest values for wound healing properties, as shown in vivo and by histopathological studies. This study demonstrates that a smart AuNPs thermoresponsive gel was successful as an antibacterial and wound healing transdermal drug delivery system.