首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:A carbon nanotube integrated microfluidic device for blood plasma extraction
  • 本地全文:下载
  • 作者:Yin-Ting Yeh ; Zhong Lin ; Si-Yang Zheng
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:13623
  • DOI:10.1038/s41598-018-31810-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Blood is a complex fluid consisting of cells and plasma. Plasma contains key biomarkers essential for disease diagnosis and therapeutic monitoring. Thus, by separating plasma from the blood, it is possible to analyze these biomarkers. Conventional methods for plasma extraction involve bulky equipment, and miniaturization constitutes a key step to develop portable devices for plasma extraction. Here, we integrated nanomaterial synthesis with microfabrication, and built a microfluidic device. In particular, we designed a double-spiral channel able to perform cross-flow filtration. This channel was constructed by growing aligned carbon nanotubes (CNTs) with average inter-tubular distances of ~80 nm, which resulted in porosity values of ~93%. During blood extraction, these aligned CNTs allow smaller molecules (e.g., proteins) to pass through the channel wall, while larger molecules (e.g., cells) get blocked. Our results show that our device effectively separates plasma from blood, by trapping blood cells. We successfully recovered albumin -the most abundant protein inside plasma- with an efficiency of ~80%. This work constitutes the first report on integrating biocompatible nitrogen-doped CNT (CNxCNT) arrays to extract plasma from human blood, thus widening the bio-applications of CNTs.
国家哲学社会科学文献中心版权所有