摘要:Recent developments of high-entropy alloys with high strength and high ductility draw attention to the metastability-engineering strategy. Using first-principle theory, here we demonstrate that reducing the Ta level in the refractory TiZrHfTa x system destabilizes the body-centered cubic (bcc) phase and leads to the appearance of the hexagonal close-packed (hcp) phase embedded in the bcc matrix. The alloying-induced features of the elastic parameters for the cubic and hexagonal structures are mapped out in details, and strong sensitivity to the crystal lattice and chemistry is revealed. Results show softening of the bcc matrix with decreasing Ta concentration which ensures ductile behavior. However, the elastically nearly isotropic hcp precipitates possess enhanced resistance against shear which promotes strengthening of the TiZrHfTa x dual-phase system. The present atomic-level insight provides strong evidence to the experimental observation, and emphasizes the significance of quantum-design for advanced multi-phase high-entropy alloys with excellent strength-ductility combinations.