摘要:The onset of obsessive-compulsive disorder (OCD) involves the interaction of heritability and environment. The aim of this study is to identify the global messenger RNA (mRNA) expressed in peripheral blood from 30 patients with OCD and 30 paired healthy controls. We generated whole-genome gene expression profiles of peripheral blood mononuclear cells (PBMCs) from all the subjects using microarrays. The expression of the top 10 mRNAs was verified by real-time quantitative PCR (qRT-PCR) analysis. We also performed an enrichment analysis of the gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotations of the differentially expressed mRNAs. We identified 51 mRNAs that were significantly differentially expressed between the subjects with OCD and the controls (fold change ≥1.5; false discovery rate <0.05); 45 mRNAs were down-regulated and 6 mRNAs were up-regulated. The qRT-PCR analysis of 10 selected genes showed that they were all up-regulated, which was opposite to the results obtained from the microarrays. The GO and KEGG enrichment analysis showed that ribosomal pathway was the most enriched pathway among the differentially expressed mRNAs. Our findings support the idea that altered genome expression profiles may underlie the development of OCD.