摘要:We investigate a hybrid system containing an In0.53Ga0.47As quantum well (QW), separated by a thin 2 nm In0.53Ga0.23Al0.24As barrier from 1.55 µm emitting InAs quantum dots (QDs), grown by molecular beam epitaxy on an InP substrate. Photoreflectance and photoluminescence (PL) spectroscopies are used to identify optical transitions in the system, with support of 8-band kp modelling. The main part of the work constitute the measurements and analysis of thermal quenching of PL for a set of samples with different QW widths (3–6 nm). Basing on Arrhenius plots, carrier escape channels from the dots are identified, pointing at the importance of carrier escape into the QW. A simple two level rate equations model is proposed and solved, exhibiting qualitative agreement with experimental observations. We show that for a narrow QW the escape process is less efficient than carrier supply via the QW due to the narrow barrier, resulting in improved emission intensity at room temperature. It proves that with carefully designed energy level structure, a hybrid QW/QD system can be used as an active region in telecom lasers with improved efficiencies.