首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A comparison between scalp- and source-reconstructed EEG networks
  • 本地全文:下载
  • 作者:Margherita Lai ; Matteo Demuru ; Arjan Hillebrand
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:12269
  • DOI:10.1038/s41598-018-30869-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:EEG can be used to characterise functional networks using a variety of connectivity (FC) metrics. Unlike EEG source reconstruction, scalp analysis does not allow to make inferences about interacting regions, yet this latter approach has not been abandoned. Although the two approaches use different assumptions, conclusions drawn regarding the topology of the underlying networks should, ideally, not depend on the approach. The aim of the present work was to find an answer to the following questions: does scalp analysis provide a correct estimate of the network topology? how big are the distortions when using various pipelines in different experimental conditions? EEG recordings were analysed with amplitude- and phase-based metrics, founding a strong correlation for the global connectivity between scalp- and source-level. In contrast, network topology was only weakly correlated. The strongest correlations were obtained for MST leaf fraction, but only for FC metrics that limit the effects of volume conduction/signal leakage. These findings suggest that these effects alter the estimated EEG network organization, limiting the interpretation of results of scalp analysis. Finally, this study also suggests that the use of metrics that address the problem of zero lag correlations may give more reliable estimates of the underlying network topology.
国家哲学社会科学文献中心版权所有