首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:An Enhanced Fuzzy K-means Clustering with Application to Missing Data Imputation
  • 其他标题:An Enhanced Fuzzy K-means Clustering with Application to Missing Data Imputation
  • 作者:Migdady, Hazem ; Al-Talib, Mohammad Mahmoud
  • 期刊名称:Electronic Journal of Applied Statistical Analysis
  • 电子版ISSN:2070-5948
  • 出版年度:2018
  • 卷号:11
  • 期号:1
  • 页码:369-381
  • 语种:English
  • 出版社:University of Salento
  • 摘要:In this paper an adjustment on the Fuzzy K-means (FKM) clustering method was suggested to improve the process of clustering. Also, a novel technique for missing data imputation was proposed and it was implemented twice: (1) using FKM and (2) using the Enhanced Fuzzy K-means (EFKM) clustering. The suggested model for imputing missing data consists of three phases: (1) Input Vectors Partitioning, (2) Enhanced Fuzzy Clustering, and(3) Missing Data Imputation. The implementation and experiments showed a clear improvement in the imputation accuracy in favor of the EFKM according to the value of RMSE.
  • 关键词:Missing Data Imputation; Cluster Analysis; Fuzzy K-means clustering; Data mining; Fuzzy sets; Fuzzy C-means.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有