首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations
  • 作者:Nathaniel R. Glasser ; Paul H. Oyala ; Thomas H. Osborne
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:37
  • 页码:E8614-E8623
  • DOI:10.1073/pnas.1807984115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Arsenate respiration by bacteria was discovered over two decades ago and is catalyzed by diverse organisms using the well-conserved Arr enzyme complex. Until now, the mechanisms underpinning this metabolism have been relatively opaque. Here, we report the structure of an Arr complex (solved by X-ray crystallography to 1.6-Å resolution), which was enabled by an improved Arr expression method in the genetically tractable arsenate respirer Shewanella sp. ANA-3. We also obtained structures bound with the substrate arsenate (1.8 Å), the product arsenite (1.8 Å), and the natural inhibitor phosphate (1.7 Å). The structures reveal a conserved active-site motif that distinguishes Arr [(R/K)GRY] from the closely related arsenite respiratory oxidase (Arx) complex (XGRGWG). Arr activity assays using methyl viologen as the electron donor and arsenate as the electron acceptor display two-site ping-pong kinetics. A Mo(V) species was detected with EPR spectroscopy, which is typical for proteins with a pyranopterin guanine dinucleotide cofactor. Arr is an extraordinarily fast enzyme that approaches the diffusion limit ( K m = 44.6 ± 1.6 μM, k cat = 9,810 ± 220 seconds−1), and phosphate is a competitive inhibitor of arsenate reduction ( K i = 325 ± 12 μM). These observations, combined with knowledge of typical sedimentary arsenate and phosphate concentrations and known rates of arsenate desorption from minerals in the presence of phosphate, suggest that ( i ) arsenate desorption limits microbiologically induced arsenate reductive mobilization and ( ii ) phosphate enhances arsenic mobility by stimulating arsenate desorption rather than by inhibiting it at the enzymatic level.
  • 关键词:bacterial arsenate respiration ; ArrAB ; structure ; enzymology ; biogeochemistry
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有