期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:36
页码:8878-8882
DOI:10.1073/pnas.1806064115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:In many important processes in chemistry, physics, and biology the nuclear degrees of freedom cannot be described using the laws of classical mechanics. At the same time, the vast majority of molecular simulations that employ wide-coverage force fields treat atomic motion classically. In light of the increasing desire for and accelerated development of quantum mechanics (QM)-parameterized interaction models, we reexamine whether the classical treatment is sufficient for a simple but crucial chemical species: alkanes. We show that when using an interaction model or force field in excellent agreement with the “gold standard” QM data, even very basic simulated properties of liquid alkanes, such as densities and heats of vaporization, deviate significantly from experimental values. Inclusion of nuclear quantum effects via techniques that treat nuclear degrees of freedom using the laws of classical mechanics brings the simulated properties much closer to reality.
关键词:nuclear quantum effect ; path integral molecular dynamics ; force field ; ab initio ; alkanes